CHEM 241-601 Stereochemistry Problem Set

1. The bromination of cyclohexene gives the two compounds shown below. Assign R or S to each chiral center in the products. Are the two molecules the same or different?

- 2. In class, we discussed an unusual concept inherent in *some* medicines. When someone takes an analgesic like ibuprofen, only 50% of the drug will actually act as an anti-inflammatory agent. Explain why this is the case. What does the other 50% of the drug hopefully do? Why doesn't acetaminophen (Tylenol®) have this characteristic (the entire tablet (100%) is an analgesic)?
- 3. Determine if the following pairs of compounds are identical, enantiomers, or diastereomers.

a) Br—
$$CH=CH_2$$
 CH_2CH_3 & $CH_2=CH$ — Br CH_2CH_3

b)
$$\begin{array}{c} \text{HO} \\ \text{CH}_3 \\ \text{CH}_3 \end{array}$$
 & $\begin{array}{c} \text{CH}_3 \\ \text{CI} \\ \text{NH}_2 \end{array}$ & $\begin{array}{c} \text{CH}_3 \\ \text{CI} \\ \text{NH}_2 \end{array}$

- 4. Consider the molecule 2,3,4-tribromohexane.
 - a) Draw a Fischer projection (C-1 on top, C-4,5 on bottom) of the 2(S),3(S),4(R) stereoisomer and label as **A**.
 - b) Draw the enantiomer of the stereoisomer you drew in a). Label as **B**.
 - c) Draw two diastereomers of **A** that are not enantiomeric. Give the absolute configurations of each chiral center and label as **C** and **D**.
 - d) How many stereoisomers are there of this molecule? _____
 - e) Are there any optically *inactive* stereoisomers?
- 5. Determine whether the following pairs of compounds are enantiomers, diastereomers or identical. Also, assign the absolute configuration of each chiral center.

a)
$$H$$
 H CH_3 CH_2CH_3 CH_2CH_3 CH_2CH_3 CH_2CH_3 CH_2CH_3 CH_2CH_3 CH_2CH_3 CH_2CH_3

- 6. Consider the molecule 2,3,4-trichloropentane.
 - a) Draw Fischer projections of each stereoisomer and indicate the absolute configuration at carbons 2 & 4 in each structure.
 - b) Is carbon 3 a chiral center?

Indicate which of the stereoisomers are chiral and which are not.